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The properties that make the N = 4 super Yang-Mills theory free from ultraviolet 
divergences are (i) a universal coupling for gauge and matter interactions, (ii) 
anomaly-free representations, (iii) no charge renormalization, and (iv) if masses 
are explicitly introduced into the theory, then these are required to satisfy the 
mass-squared supertrace sum rule ~s=0.1/2 (-1)2s+1( 2s+ 1) M] = 0. Finite N = 2 
theories are found to satisfy the above criteria. The missing member in this class 
of field theories are finite field theories consisting of N = 1 superfields. These 
theories are discussed in the light of the above finiteness properties. In particular, 
the representations of all simple classical groups satisfying the anomaly-free 
and no-charge renormalization conditions for finite N = 1 field theories are 
discussed. A consequence of these restrictions on the allowed representations is 
that an N = 1 finite SU(5)-based model of strong and electroweak interactions 
can contain at most five conventional families of quarks and leptons, a constraint 
almost compatible with the one deduced from cosmological arguments. 

1. I N T R O D U C T I O N  

An unat t ract ive feature of field theoret ic  formula t ions  of q u a n t u m  
elect rodynamics  and  its synthesis with the strong and  weak interact ions is 
the process of renormal iza t ion  of masses and  coupl ing  constants  by infinite 
amounts .  Al though highly successful, it is an .additional prescr ipt ion for 
hand l ing  the theory and  is an ind ica t ion  of some feature of fundamen ta l  
impor tance  lacking in the theory. A new feature of q u a n t u m  field theories 
is the existence of monopo les  with masses of the order  of Planck mass 
(1019 GeV). It was hoped  that  the quan t iza t ion  condi t ion  satisfied by the 

gauge and  the monopo le  charges could conspire  to e l iminate  the process 
of  renormal izat ion.  However  such a l ink has not  been  forthcoming.  Ins tead,  
a solut ion to the p rob lem of  ul t raviolet  divergences has emerged from 
applying supersymmetry  realized in its extended form. This fact has revived 
interest  in  supersymmetry  once again. 
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The N = 4 super Yang-Mills theory was the first to be proved ultraviolet 
finite to all orders in perturbation theory (Mandelstam, 1983; Brink et al., 
1983a, b; for an alternative proof  see Howe et al., 1983, 1984). The proof  
was greatly facilitated by the formulation of the theory in the light cone 
gauge. Using the same formalism it has been established that the theory is 
also finite if mass terms for the scalars and fermions are explicitly added 
by hand (Taylor, 1983; Namazie et al., 1983; Rajpoot et al., 1983a)provided 
they satisfy the mass-squared supertrace sum rule 

E (-1)2~+'(2s + 1)M~ =0  (1) 
s=0 ,1 /2  

and also that mass-dependent compensating cubic terms for the scalar 
bosons are inserted in the theory to ensure full Lorentz invariance of the 
resulting interactions. Detailed study of the explicitly broken N = 4 super 
Yang-Mills theory has revealed that neither supersymmetry nor the internal 
SU(4) supercharge symmetry of the theory survives. The potential of the 
theory is bounded from below and can break the gauge symmetry spon- 
taneously (Rajpoot and Taylor, 1983). After spontaneous symmetry breaking 
the resulting mass spectrum of the particles satisfies the full supertrace sum 
rule 

Y~ (-1)2~+1(2s+ 1)M2= 0 (2) 
s=0,1/2,1 

It has been demonstrated further that these mass-squared sum rules 
arise from the cancellation of quadratic divergences in the one loop effective 
potential of the theory (Capper and Rajpoot, 1984). A less satisfying aspect 
of the N = 4  theory is that the particle content of the theory, which is 
{11,14, 06}, where s a denotes an SU(4) d-dimensional multiplet of particles 
of spin s, belongs to the adjoint representation of the internal gauge sym- 
metry group G. This is contrary to the quark and lepton representations 
required to describe the observed spectrum of particles in nature. A question 
that comes to mind is whether the N = 4 Yang-Mills theory is the only 
finite theory or are there others? By studying the anatomy of the N =  4 
theory in the presence of  explicit mass terms, we found it has the following 
properties for finiteness (Rajpoot et al., 1983b): (i) a single coupling constant 
for gauge and matter interactions; (ii) the representations to which the 
particles belong are anomaly free; (iii) the coupling constant renormaliz- 
ation vanishes, i.e., f l(g) = 0; (iv) the mass term for the scalars and fermions 
introduced explicitly by hand are required to satisfy the supertrace mass- 
squared sum rule ~s=0,1/2 (--1)2s+1( 2s -I-1)M~ = 0 before spontaneous sym- 
metry breaking. Note that although these finiteness properties emerge from 
the study of  the explicitly broken N = 4 theory they are general and do not 
refer to any specific part of  the N = 4 theory. On the basis o f  these properties 
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it was conjectured that field theories constructed out of N = 1 super multiplets 
and satisfying the above criteria would also be finite. In particular the condition 
for the charge renormalization to vanish at the one loop level in these N = 1 
theories was derived in Rajpoot et al. (1983b). In passing we note that finite 
N = 2 theories automatically satisfy the above three criteria for finiteness 
by construction. To see this recall that the particle content of finite N = 2 
theories is one vector multiplet {11, �89 02} ~n the adjoint representation and 
a finite number of matter hypermultiplets Hi [where now SU(2) is the 
internal symmetry of the supercharges]. Each hypermultiplet Hi consists of 
two N = 1 matter multiplets {�89 02}, one in the representation R~ and the 
other in the conjugate representat ion/~ of the gauge group G. The anomalies 
of these representations are equal in magnitude but opposite in sign. Since 
anomalies are additive, this ensures that the hypermultiplet is anomaly free. 
The number of such hypermultiplets is restricted by the condition of the 
vanishing of the charge renormalization at one loop (Howe et al., 1983a, 
b; Koh and Rajpoot, 1984) 

C2(G) =• T(R,)=�89 T(Hi) (3) 
i i 

Representations of all classical groups satisfying this condition have been 
given in Koh and Rajpoot (1984). Note that finite N = 2 and N = 4 theories 
have one universal coupling for both the gauge and matter multiplets. 

In constructing finite N = 1 field theories we use the superfield notation 
to write down the most general action in terms of N = 1 superfields. From 
this the Lagrangian in components is derived. The main advantage of the 
superfield approach is to limit the number of arbitrary parameters and 
interactions. This follows from the fact that the renormalizability of  the 
theory restricts the interaction terms involving superfields to be at most 
cubic. Also, in the presence of abelian gauge symmetry the gauge coupling 
grows asymptotically and hence the third finiteness condition [i.e.,/3 (g) = 0] 
cannot be implemented. Hence only non-Abelian gauge symmetry is admiss- 
ible. This in turn forbids interaction terms linear in N = 1 superfields in the 
action. With these restrictions in mind the N = 1 superfield action is con- 
structed in the following section. 

2. VANISHING OF CHARGE RENORMALIZATION 

The action with one vector superfield (V) and an arbitrary number of 
chiral superfields (~b L) in representations R of  the internal symmetry gauge 
group G is 

S = f d4x [ d40 (a~egVc L +6@g2d2O Tr( W~W~) 



120 Rajpoot and Taylor 

--d20~IhLMN~)L~)M~) N -  d 2 0 ~l " MLMC~ Lr M 

2 1 - 2 L M d2OMxO2_~.2Tr(W,~W~ ) - d  O~.v.MLMO ~b & 

_ d20 MxO2hLMN~bL&I~ 6 N _ d40 M 2 02ff2dpt, gat] 

+ (h.c.) + (gauge fixing) + (compensating ghost) terms (4) 

where W,~ =D2(e-gVD,~egV). 1, V =  V~Ta. Ta are the generators of G, 
~tLM02 is the spurion that lifts the degeneracy between the masses of the 
scalars and pseudoscalars; MaO 2 is the spurion that gives masses to the 
gauge fermions (gauginos) of the vector superfield V and repeated indices 
are summed over. The cubic interaction, which is a group invariant, can be 
written in different equivalent forms: 

h L M N d / ~ L ~ M ~ ) N  - -  l f l r a n  d L d M 2 .  N __ l ,  a l ,  b . . . .  D a  D t b  D # c  d L d .  M d N  
- -  I~ L M N  ttJ l tl~ m t l )  n - -  ** L , M , N  l ~ - l l '  J'~ mm'~t~" n n ' t t l  l '  ~ m ' t l ~  n ' 

where R, R', R" are distinct representations of G. In what follows the 
symbol R will be taken to represent these distinct representations. In 
components and after elimination of the auxiliary fields, the Lagrangian is 

1 a ~ 1-a  ~ a + ~ i L t ~ o L  

1 ~ 2 1 i.* 2 1 2 2 1 2 2 + ~ ( D  AL) + ~ ( D  BL) - -~MALAL-- '~MBLBL 

1 1 - a  a 

g2 1 
- - -  - M  ghLM~b L( A M + ysB~)~t N 

- M ~ A ~ ( A ~ +  B~) - M ~ h L ~ ( A L A M A N  - 3ALBMBN) 

- 4hL~NhLM,N,A~BNAM,BN, + h.c. 

+ (gauge fixing) + (ghost) terms (5) 

(At, BE, At) are the scalar, pseudoscalar, and fermions of d~L transforming 
according to representation R of G, A ~ are the gauginos and 

a a a - -  . " a b c * * r b  c G ~  = O~Wt, -O~W~ -1- gJ w~  W~ 

D ~ A  L = O"A L -  ig( W ~" R ) A L  

D = o ~ D .  
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The mass matrices have been taken to be diagonal for simplicity; ML~ = 
ML 6LM, IQILM = JQIL 6LM, M2AL= M2L + )Q2 + M2, M2L= M2L- MI2 + M 2. 
Gauge invariance requires the Yukawa coupling and the mass matrices to 
satisfy the following relations: 

hxMNR"L x C-1 -1 .v + hLYNC R M + haMzC-1R~ = 0 (6) 

R~ + C-1ML R~ = 0 (7) 

T"C-1Mx + C-'M;,T" = 0 (8) 

where C is the charge conjugation matrix and denotes transposition. We 
follow in part the notation of Salam and Strathdee (Salam and Strathdee, 
1978). At this stage the Lagrangian involves an arbitrary number of rep- 
resentations (L, M, N) with arbitrary Yukawa couplings hLMN and arbitrary 
masses ML, Mr, M,. Restriction on this freedom of choice is achieved by 
demanding that the theory is free from ultraviolet divergences encountered 
at the one- and two-loop level. Consider first the coupling g. The one-loop 
contribution to its renormalization coefficient b(o 1) is given by (Gross and 
Wilczek, 1973; Politzer, 1973) 

b(o 1) = -~C2(G)  +2Tf(R) +~T~(R) (9) 

where C2(G) is the quadratic Casimir for the gauge bosons in the adjoint 
representation G, Tf(R), and Ts(R) are the second indices for two- 
component fermions and real scalar bosons in representation R of G. The 
one-loop contribution (b(o ~)) of the various N = 1, 2, and 4 theories can be 
worked out by using equation (9). These are given in Table I. The second 
indices of the fermions [Tz(R)] and the scalar [Ts(R)] in the same rep- 
resentation R are equal and are denoted by T(R). Vanishing of charge 
renormalization at one loop for the Lagrangian of equation (4) requires 
(Rajpoot et al., 1983b) 

3C2(G) =Y, T(R) (10) 
R 

Table I. One-Loop Contribution to Charge Renormalization in 
N = 1, 2, and 4 Supersymmetric Theories 

Multiplet and 
Supersymmetry particle content b o 

N =  1 Vector (11,�89 3 C2(G ) 
Matter (�89 0 2) -T (R)  

N = 2 Vector (11, �89 0 4) 2 C2(G) 
Matter (�89 0 4) - 2  T(R) 

N = 4  Vector (11, �89 0 6) 0 
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This relation fixes the number and type of matter multiplets that can be used 
to construct the one-loop finite theory and was first discussed in reference 
Rajpoot et al. (1983b). The Yukawa interaction term in the Lagrangian 
[equations (4) and (5)] does not contribute to the one-loop renormalization 
of the gauge coupling g. Restriction on it comes from considering the 
renormalization of g at the two-loop level. 

The two-loop contribution (Jones, 1975; Vladimirov and Shirkov, 1979) 
to the renormalization of the gauge coupling g can be divided into four 
parts according to the interacting particles, and their contribution is given 
separately: 

(i) Gauge-boson-gauge boson contribution, 

b(2)= _~_Cz(G)Z (11) g g  

(ii) Gauge-boson-two-component fermions in the representation R 
contribution, 

b(2). ~C2(G) T(R)  + 2C2(R) T(R)  (12) g f -  
(iii) Gauge-boson-real-scalars in the representation R, 

b(2) = 2 C2(R) T(R)  +IC2(G ) T(R)  (13) gs 

(iv) Fermions-scalars contribution coming from the Yukawa coupling 
(Jones, 1975; Vladimirov and Shirkov, 1979) 

b(2) = Tr( hflRaR b) fs 
where h denotes a general Yukawa interaction matrix and/~ is the conjugate 
matrix. 

Note that the two-loop contributions depend only on the group theoretic 
factors C2(G), T(R) ,  C2(R), and hLMNhL'MN [from the Yukawa interaction 
term in equation (5)] which are defined as 

fabcfa'bc = C2( G)Saa' (14) 
b,c 

R~Rj~k = c2( g )rik (15) 
a , j  

~. gijRji ~ b = T(g)~ob (16) 
I,J 

E hLMNhL'MN = A26LL' = (AZ)LL' (17) 
M,N 

It is straightforward to work out the two-loop contributions of equations 
(10) to (13) for the N = 1 Lagrangian of equation (4) by using its component 
form as in equation (5). These are given in Table II. The final two-loop 
contribution is 

b(o 2) = 4C2(R) T(R)  -2 A2 (R)  T ( R ) g  -2 (18) 

where use has been made of the one-loop finiteness condition [equation 
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TabLe II. Two-Loop Contribution of N = 1 Superfields to the Renormalization of the 
Gauge Coupling 

Multiplet and Contribution in 
particle content Interacting particles units of (g/47r) 4 

Vector (I 1 , �89 

Matter (�89 02 ) 

(gauge boson-gauge boson) 
+ (gauge boson-gauge fermion) 
(gauge boson-ferrnion) 
+ (gauge boson-scalar) 
Yukawa: 

~ R ~ L ( A +  ~sB)~ 
hL~,~L(A + VsB)M~ N 

-6C2(G) 2 

6C2(R) T( R ) + 4(72(G) T( R ) 

-2C2(R)T(R) -2C~(G)T(R) 
-2A2(R)T(R)/g 2 

(11)] for further simplification. That the gauge coupling be unrenormalized 
at two loops requires b~02) to vanish, i.e., 

A2(R) = g22C2(R) (19) 

This condition fixes the magnitude and form of  the Yukawa coupling in 
the Lagrangian of  equation (4). Hence finiteness of gauge coupling at one 
and two loops fixes the representation content and their possible Yukawa 
interactions. 

2.1. Nonrenormalization of the Triple Vertex Coupling 

The one- and two-loop nonrenormalization conditions [equations (9) 
and (19)] for the gauge couplings fix also the form of the triple vertex 
coupling hLMN. These two finiteness conditions also ensure that hLMN is 
not renormalized up to two loops. To demonstrate this we make use of the 
superfield calculations. Dimensional arguments lead to the remarkable result 
that the triple vertex corrections are finite. Hence only the chiral superfield 
wave function renormalization need be considered. It is then sufficient to 
show that the wave function renormalization vanishes at the one- and 
two-loop level due to the finiteness conditions of equations (9) and (19). 
In the absence of masses there are only two one-loop diagrams contributing 
to the chiral superfield wave function renormalization. These are shown in 
Figure 1. Their contribution is 

1 ( d4p d~ qS(-P, O)[A2-2RaR~g2]d~(P, O) 
~ / ~ .  (2~r)4 (2~.)D d40 k - -~-~ j  7 (20) 

where the loop integrals are regularized in D space-time dimensions, e --- 
( 4 - D ) / 2  and repeated indices are contracted. This contribution vanishes 
due to the finiteness conditions of equation (19). Following Machasek and 
Vaugham (1983) the two-loop corrections to the wave function &L can be 
worked out as (a) one-loop corrected propagator insertions to Figure 2 and 
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Fig. L 

k 

r ~(e,o) 
(a) (b) 

Diagrams contributing to one-loop chirat superfield wave function renormalization. 

a set of additional two-loop diagrams as shown in Figure 3. The one-loop 
corrected 4~b vertex is given by equation (20) (which is zero), while the 
diagrams contributing to the vector propagator are as shown in Figure 2. 
Their contribution is 

'it:' - C2(G)] ~'~eg2 I (2~T, 4d4p (~l~d4OW(_PoO,[~RZ(R) 3 

which is zero due to the finiteness condition of equation (9). Hence there 
are no one-loop propagator insertions in the two-loop q~-wave function k 
v (  ) 

~g .  2. One-loop correCtions to the vector superfield propagator. 
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* (-P,o) ~(p,o) 

(a) (b) (c) 
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(d) {e) 

(f) 

(g) (h) 

(i) 

r , ~  ,, 

{j) 

(k) (i) 

(m) (n) 

Fig. 3, Diagrams contributing to two-loop chiral superfield wave function renormalization, 

r enormal iza t ion .  The  r ema in ing  two- loop  d iagrams  are shown in F igure  3. 
The i r  c o n t r i b u t i o n  is 

d 4 _ g41~2~f~b(-P,O){-[(hRahRa)I2]g-2-[finitecontribution] 
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-[~A2C2(R)I2] -{[ C2(R)-I c2(R)C2(G)]I1) 
+[ C~(R)-I c2(R)C2(G)]{[I2]+[I1]+[I2] 
+[0] +[0] + [0] + [0] + [0]}4,(P, 0) 

where/1 and 12 are the divergent integrals: 

f dOk dDl 1 
Ia= (27r)D (27r)D k2(k+p)212(l+p)2 

f dDk dOl 1 
12= (2rr)D (27r) ~ k21e(k+p)Z(k+I) 2 

(22) 

(23) 

(24) 

Shifts of integration variables have been employed in the various integrals 
arising from the contributions of Figure 3 to bring them in the standard 
form 11, /2 of equations (23), (24). The group factors can be simplified 
further by using the gauge invariance condition (6). This simplifies equation 
(22) to 

g 4/22~ f d4P ~--~c~(-P, O)[-A2C2(R)g-2 + 2C2(R)]~(P, 0)12 

and this vanishes due to the finiteness condition of equation (10). Hence 
there is no wave function renormalization at two loops and the triple vertex 
coupling hLMN is finite. We have also checked that there are no counter 
term contributions arising from one-loop corrections to tritinear couplings. 

3. ANOMALY CANCELLATION 

Renormalizabitity of field theories necessitates use of representations 
that are free from triangle anomalies (Machacek and Vaugham, 1983). These 
representations are also required to be complex since the quarks and leptons 
of the three families ~0 ~e~, ~0 (~'~, 4/~ lie in complex representations of the 
particle interaction group SU(3) • SU(2) • U(I). Another reason for using 
complex representations is to avoid the problem of unnaturalfine tuning of 
particle masses which in principle could be as large as the natural unification 
scale of the theory (Adler, 1969; Bell and Jackiw, 1969). The representations 
of all classical groups except AM [=---SU(M+I)] and 0(6) are anomaly 
free. This fact is related to the absence of a third-order Casimir invariant 
for the Lie algebra of all classical groups except SU(M) and 0(6). Since 
0(6) is locally isomorphic to SU(4), this case is contained in the discussion 
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of anomaly-free complex representations of SU(M). The Young tableaux, 
dimensionality d(Ri), and the anomaly index [A(Ri)] of some interesting 
representations of SU(M) are 

R, d(R,) A(R~) 
[-~--ZZ Z--D ( M + P - 1 ) !  (M+P)!(M+2P)! 

p bo~es . .. ( M  - 1)!P! ( M  + 2)!(P - 1)! 

( M + P - 1 ) !  (M+P-1)!F(M,p)  
~ -  Z-----_~ Z[] P(M-1)!(P+I)!  (~V/+2)!P! 

['~ M! (M - 2 P ) ! ( M - 3 ) !  
boxes t" I P [.~ (M-P)!P!  ( M - P - 1 ) ! ( P - 1 ) !  

(25) 

p boxes ', ,' 
I I 
[] 

P ( M + I ) !  

(M-P)!(P+I)!  (M_-~.p!O(  M, P) 

where 

F(M, P) = M3(p - 1) + M2(3p 2 -  4P - 3) + M(2P 3 - 5P 2 -  5 P -  2) 

- 2 P ( P +  1) (26) 

G(M, P)=M3-M2(3P-4)+M(2P2-5P-7)+2Pz+4P+2 

The A(Ri) are normalized such that the anomaly of the fundamental 
representation is +1. The anomaly indices of other representations can be 
worked out using the following two formulas iteratively, 

A(R, 03 Rj) = A(R,) + A(Rj) (27) 

A( R, | Rj) = dim( R,)A( Rj) + dim( R))A( R~) (28) 

The condition that the representations used to build up the finite field theory 
be anomaly free implies 

Y~ A(R) --- 0 (29) 
R 

The anomaly of the adjoint representation is zero, i.e., A( FF] ) = 0. This 
can be seen by using equation (28) and the fact that the anomalies o f{D,  ~]} 
representations are ( -1 ,  0). Thus equation (29) is trivially satisfied in the 
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N = 4 super Yang-Mills theory since all superfields belong to the adjoint 
representation of the gauge group G. 

In the case of N = 2 theory (Georgi, 1979; Eichten et al., 1982), the 
vector superfield consists of  one N = 1 vector superfield and one N = 1 
chiral superfield in the adjoint representation. Hence it is anomaly free. 
The matter hypermultiplet consists of two chiral N = 1 superfields, one in 
representation k and the other one in the conjugate representation /~ of  
the symmetry group G. This construction of  the matter hypermultiplet is 
the consequence of the central charge constraint. Since the representation 
conjugate to R = ( ' ~ 1 ,  ' ~ 2  . . . .  , AM-~) is k = (AM-I , . . . ,  A2, A1), their 
anomalies are related by 

A(R) = -A(R) (30) 

Hence the hypermultiplet of the N---2 theory also satisfy the anomaly 
constraint of  equation (29). That the anomalies of different representations 
must be required to cancel among themselves is a new feature of  finite 
N = 1 field theories. The kind of representations that are admissible in these 
theories is also restricted by the constraint imposed by the vanishing of the 
one-loop charge renormalization (Capper and Rajpoot, 1984). This con- 
straint is discussed for all classical groups in the following section. Also in 
order to discuss the vanishing of charge renormalization we need the 
quadratic Casimir invariants of all classical groups. These are listed in Table 
III for convenience. 

4. REPRESENTATIONS OF CLASSICAL GROUPS SATISFYING 
THE CONSTRAINTS OF NO CHARGE RENORMALIZATION 
AND ANOMALIES CANCELLATION 

4.1. AM-I--= SU(M) 

The anomaly constraint is only relevant to this family of groups. In 
Table IV, the Young tableaux, the dimensionality d(Ri), the second index 
T(Ri), and the anomaly index A(Ri) of all representations satisfying the 
constraint 

T(R)<- 3C2(G) 

are given. 
The last representation is only relevant for M = 4. For M = 3, it is the 

of  SU(3). For finite grand unification, we require groups with rank greater 
or equal to four (M/> 5). However it is conceivable that quark and leptons 
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Table III. The Dimension and C2(G) of the Adjoint 
Representations of all Classical Groups 

Group O Dimension C2(G) 

SU(M)  = AM_ 1 M 2-1 M 
S O ( 2 M + I ) = B  M M ( 2 M + I )  2 M - 1  

Sp(2M) = CM M(2M+ 1) 2 M + 2  
SO(2M) = D M M ( 2 M -  1) 2 M - 2  

/~6 78 12 
E 7 133 18 
E 8 248 30 
F 4 52 9 
G2 14 112 

are composite. In this case groups of  rank less than four (i.e., M-<5)  are 
relevant for constructing finite preon models. Table IV covers both 
possibilities. Here we consider finite grand unification. Each family is 
understood to constitute a 5 and a 10 of SU(5).  The particle spectrum of  

Table IV. Dimensionability, Anomaly index, and the Second Indices of SU(M)  
Representations Allowed by the Constraint of One-Loop Finite Charge Renormalization 

Representation Dimension A(Ri) T(R~) Range of N 

(M-~)~  
boxes [ 

1 
[ ]  M 1 - M_>2 

2 

M - 2  M ( M - t )  M - 4  M>--4 
2 2 

M ( M + I )  N + 4  M + 4  M->3 
2 2 

M ( M - 1 ) ( M - 2 )  ( M - 3 ) ( M - 6 ) ( M - 2 ) ( M - 3 )  
6<_M<~17 

3 2 4 

i i 

(M2-1)  0 M M_>2 i i 
i i 
[] 

M ( M a -  1) (M2-9)  M2-~3- 2 M<--6 

l ~ ( M 2 _  1) M(M2-16)  M(M~-4)  M < 4  
3 6 
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the finite SU(5) theory will consist of a fixed number of 5's, 5's, 10's, 1---0's, 
and a 24. Out of this, at least three 5's and three 10's should survive. The 
rest should consist of equal numbers of (5, 5)'s and (10, 1---0)'s which pair 
off to acquire superheavy mass according to the survival hypothesis of 
Georgi (Georgi, 1979; Eichten et al., 1982). The combination in the proceed- 
ings is always anomaly free. 

How many light families can an N = 1 finite model admit? Let there 
be ( f +  a) number of 5's, a number of 5's, ( f +  b) number of 1--0's and b 
number of 10's. Note that a number of the 5, and 5's annihilate to get 
superheavy. Similarly for the b number of 10 and 1 O's. This leaves f (5 + 10)'s 
and hence f families. We also require the adjoint representation of SU(5) 
for the descent of SU(5) to SU(3) • SU(2) • U(1). The anomaly constraint 
is trivially satisfied, 

( f +  a)A(5) + aA(5) + (f+ b)A(~) + bA(lO) + A(24) : 0 (31) 

Vanishing of charge renormalization [equation (10)] gives 

1(f+2a)+3(f+2b)+5 = 15 (32) 

Table V gives all the solutions of equation (32) that contain three or more 
families. Note that the minimal finite SU(5) model can contain five families 
at most. It is interesting to note that this constraint on the number of families 
in the SU(5) finite field theories is not far from the one deduced from 
cosmological considerations (Olive et al., 1981; Turner, 1980) (f-<4). For 
a more complete discussion on SU(M) groups and anomaly cancellation 
see Rajpoot and Taylor (1984). 

4.2. SO(2M + 1) = BM 

The representations of this chain of groups with T(R)<3C2(G) are 
given in Table VI. The representations of high dimensionality are relevant 

Table V. Particle Content of N = 1 Finite 
SU(5) Models 

f 5 5 10 10 24 

3 4 7 3 0 1 
4 1 4 1 1 

4 2 5 3 0 1 

5 0 5 5 0 1 
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Table VI. The Dimension and Dynkin Index of S O ( 2 M +  1) [------BM] Representations 

Representation Dimension T(R)  Range of M 

[ ]  2 M + 1  1 M->2 
Spinor 2 M 2 M-3 2 -< M -< 7 

~ (Adjoint) M ( 2 M  + 1) 2M - 1 M >_ 2 

( M +  1)(2M+ 1) 2 M + 3  M->2 

M ( 4 M 2 - 1 )  M ( 2 M - 3 )  2-<M~<3 

for spontaneous symmetry breaking. Finiteness as required by equation (10) 
implies 

nl + n22 M-3 + n3(2M - 1) + n4(2M + 3) + n s M ( 2 M  - 3) = 3 ( 2 M -  1) (33) 

where ni's are the multiplicities of  the representations as in Table VI and 
M--- 2. Some solutions of  equation (33) are the following: 

(i)  n 1 = n 2 = n 4 = n 5 = 0, n3 = 3. This theory is the N = 4 super Yang- 
Mills theory and hence finite to all orders. 

(ii) n2 = n4 = n5 = 0. Equation (33) reduces to nl + (n2 -  3) (2M - 1) = 0. 
0 ~  n 3 < 3. Grand unified theories built with these constraints can contain 
a large number  of  conventional families accompanied by their mirror 
counterparts. The neutrinos identifying the families in excess of  four to five 
are required to be massive (>2  GeV) to avoid conflict with helium abund- 
ance in the universe (Olive et al., 1981; Turner, 1980). 

(iii) n l =  n4 = n5 = 0. Only the spinor representation and the adjoint 
representations are active. These representations are required to satisfy 

n22M-3 + (n3 - 3)(2M - 1) = 0 (34) 

The solutions In2,  n3] of this equation are 

0(5) :  (9, 0), (6, 1), (3, 2) 

0(7): (15, 0), (10, 1), (5, 2) 

0(9) :  (7, 1) 

There are no other solutions to equation (34). 
(iv) A mixture of  spinors, fundamentals,  and adjoint representations 

n4 = n5 = 0. The equation to be satisfied is nl + n22 M-3 + (/'/3 - 3)(2M - 1) = 0. 
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The solutions are 

SO(5); 

Rajpoot and Taylor 

(nl ,  n2, n3 )=(n ,  2 ( 9 - - n ) , O ) ,  n1<---9 

---- (n, 2 ( 6 -  n), 1), nl-----6 

= (n, 2(3 - n), 2), nl --< 3 

SO(7); (nl, n2, n3) = (n, 15 - n, 0), n --- 15 

(n, 1 0 -  n, 1), n --< 10 

(n, 5 - n ,  2), n--<5 

SO(9); (nl, /'/2, n3 )  ~--- (21-2n ,  n, 0), n -< 10 

(14-2n ,  n, 1), n-<7 

( 7 - 2 n ,  n, 2), n-----3 

SO( l l ) ;  (nl, n2, n3) --- (27 -4n ,  n, 0), n - 6  

(18-4n ,  n, 1), n---4 

( 9 - 4 n ,  n, 2), n-<2 

SO(13); (nl, n2, n a ) = ( 3 3 - 8 n ,  n, 0), n-<4 

( 2 2 -  8n, n, 1), n-<2 

(11, 0, 2), (3, 1,2) 

S0(15);  (nl, n2, n3) = (23, 1, 0), (6, 2, O) 

(10, 1, 1) 

SO(17); (nl, n2, ha) = (13, 1, 0) 

There are no solutions beyond M > 8. 

4.3. S P ( 2 M )  = Cm 

This chain of groups, although much used in classical mechanics, has 
not been favored for describing schemes of unification (Rajpoot, 1981). 
This chain will therefore be considered briefly. Since SP(2)-~ SU(2), 
SP(4) -~ SO(5), we require M > 3 to avoid overlapping discussion in AM_I 
and BM. All representations are anomaly free. Table VII gives the dimension 

Table VII. The Dimension and Second Index T(R) of SP(2M) Representations (R) 

Representation Dimension T(R) Range of M 

[] 2M 1 M->3 

M(2M-1)-I  2M-2 M->3 

[-]-] = adjoint M (2M + 1) 2M + 2 M >- 3 
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and Dynkin index of SP(2M) representations. Finiteness as required by 
equation (10) implies 

n~ + (2M - 2) n2 + (2M + 2) n3 = 3(2M + 2) (35) 

The solutions of  this equation are as follows: 
( a )  n 1 =//2-----0, n3 = 3. This theory coincides with the N =  4 super 

Yang-Mills  theory. 
(b) n2 = 0, nl = (3 - n3)(2M + 2), 0 ~< n 3 < 3. The maximal subgroup of 

Sp(2M) is SU(M) x U(1). SU(16) can accommodate  one family of  conven- 
tional fermions. Hence SP(32) can serve as a candidate for N = 1 finite 
unification. The number  of  fermion families is 34(3 - n3). These are accom- 
panied by equal numbers of  mirror families. 

(c) nl, n2, n3 ~ 0. The general solutions of  equation (35) are 

(nl, 1/2, t13) = (2M +6,  1, 1), (8, 2, 1) 

( 1 0 -  2M, 3, 1) f o r 3 -  < M_< 5, (4, 1, 2) 

Many schemes of unification are allowed for large enough M. The choice 
of  M [i.e., restriction on Sp(2M)] is only restricted by the solution ( 1 0 -  
2M, 3, 1). 

4.4. SO(2M) = DM 

The representations that have second index T(R~) less than or equal 
to 3Ca(G) are tabulated in Table VIII .  Only the fundamental  spinor, 
second-, and third-rank antisymmetric tensor representations are allowed. 
The third-rank antisymmetric representation is allowed for the SO(8) group 
since the groups {SO(4), SO(6)} are isomorphic to S U ( 2 ) x  SU(2) and 
SU(4) which have already been dealt with under the AM chain of groups. 
I f  the multiplicities of  the first three representations are denoted by n~, then 
equation (10) gives 

n 1 + 2M-4n2  + (2M - 2) n 3 = 3(2M - 2) (36) 

Table VIII. The Dimension and Second Index T(R) of SO(2M) Representations 

Representation Dimensionality T(R) Range of M 

Fundamental 2M 1 M >- 4 
Spinor 2 M-1 2 M-4 5 -< M -< 9 

Second-rank antisymmetric M (2 M - 1) 2M - 2  M > 3 
---- adjoint 

M 
Third-rank antisymmetric ~ - ( 2 M - 1 ) ( 2 M - 2 )  ( 2 M - 1 ) ( M - 2 )  Only M = 4  

allowed 
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The allowed solutions are as follows: 
(i) nl = n2 = 0, n 3 = 3. The theory becomes the explicitly broken N = 4 

super Yang-Mills theory. 
(ii) nl = n + fi, n2 = rn + rfi, n3 = 1. The theory becomes the N = 2 theory 

with n fundamentals and m spinors. 
(iii) SO(8). This admits the third-rank antisymmetric representation 

in Table VIII. Finiteness requires n x + n2 + 6n3 + 14n4 = 18. The solutions are 

( n l ,  n2 ,  n3 ,  /'/4) = ( 1 8  - -  n ,  n, O, 0), (12-  n, n, 1, 0), 

( 6 - n ,  n; 2, 0), ( 4 - n ,  n,O, 1) 

SO(10); (nl, n2, n 3 )  = (24-2n,  n, 0), (16-2n,  n, 1), (8 -2n ,  n, 2) 

S 0 ( 1 2 ) ;  ( / ' /1 , / /2 ,  n3)  ~-~ (30-4n,  n, 0), (20-4n,  n, 1), ( lO-4n,  n, 2) 

S0(14); (nl, n2, n3)= (36-8// ,  n, 0)(24-8//,  n, 1)(12-8n, n, 2) 

S0(16); (//~, n2, n3) -- (42, O, 0), (26, 1, 0), (10, 2, O) 

(28, O, 1), (12, 1, 1), (14, O, 2) 

S0(18); (nl, n2,//3) = (48, O, 0), (16, 1, 0), (32, O, 1) 

(0, 1, 1), (16, O, 2), 

SO(20); (nb n2, n3) = (54, 0, 0), (36, 0, 1), (18, 0, 2) 

In the above nb n2, n3 -> 0 and the spinor representations of SO(10), SO(14), 
SO(18) are complex. A consequence of the restriction on the allowed 
representations is that only certain intermediate stages of symmetry breaking 
are allowed. Consider the following descent of SO(10) (Rajpoot, 1980): 

54 
SO(10) ) SU(2) x SU(2) x SU(4) (37) 

The traceless symmetric 54 has second index T(54) = 165/2 and hence is 
not admissible. Therefore SO(10) cannot break to the Pati-Salam symmetry 
group (Pati and Salam, 1974) SU(2)rxSU(2)RXSU(4) .  However, the 
descent 

45 45 
SO(IO) ) SU(4) x SU(2) x g ( l )  ) SU(3) x SU(2) x U(1) x U(1) 

16 16 
> S U ( 3 ) x S U ( 2 ) x  U(1) ~ SU(3)x  U(1)em (38) 

is allowed as it requires 2 45's and 2 16's. This combination satisfies exactly 
the finiteness equation (36). The physical consequence of this interesting 
descent is that the charged right-handed gauge bosons are very massive 
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Table IX. Representations Allowed by Finite- 
ness Condition in the Case of Exceptional 

Groups 

Group  Fundamental  Adjoint 

E6, G 2 12 0 
8 1 
4 2 
0 3 

ET, F 4 9 0 
6 1 
3 2 
0 3 

E 8 --  3 

-~101~ for sin 2 0w-~0.22, as =0.10. The second neutral gauge boson 
can be as light as 200 GeV (Rajpoot, 1982). 

The chain of exceptional groups can accommodate at most two low- 
dimensional representations since the second index, T(Ri) of other rep- 
resentations exceeds 3C2(G). The solutions of the finiteness condition as 
expressed by equation (10) are given in Table IX. In all cases when three 
adjoint representations are used the theory coincides with the N = 4 super 
Yang-Mills theory. 

5. MASS INSERTIONS 

The spurion mass terms introduced in the Lagrangian of equation (4) 
break the N = 1 supersymmetry. These spurion mass insertions are soft in 
the sense that their presence induces only logarithmic infinities. In the 
absence of  the spurion insertions [terms proportional to 02 and 0202 in 
equation (4)] the Lagrangian exhibits N = 1 supersymmetry. Elimination 
of the auxiliary fields has two effects: 

(a) Mass-dependent cubic interaction terms appear. 
(b) The masses at the tree-level satisfy the supertrace sum rule 

(-1)2~+1(2s + 1)Ms = 0 
s=0,1/2 

This can be checked by inspecting the component form of the Lagrangian 
in equation (5) with M~ = 0 =  AT/L. The mass-dependent cubic interactions 
are crucial to cancel infinities between fermion loops and scalar boson 
loops. In analogy with this situation the addition of mass terms for the 
gauginos via the spurion MxO 2 requires the introduction of two further 
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terms, viz. M~O2hLMNc~Ld~M~b N and M~O202~bLd~ L. It is easy to check that 
the mass-dependent logarithmic infinity induced in the ~b~b propagator  at 
the one-loop level cancels if 

hLMN h L'MN = A 2 3LL, = 2C2(R) 3LL'g 2 
M,N 

This condition is the same as the one deduced from the vanishing of the 
renormalization of the gauge couplings at the one- and two-loop levels 
[equations (10) and (19)3. The spurion M02 does not require cubic insertions 
as the induced infinities cancel among themselves due to tachyonic mass 
terms for the pseudoscalars. All masses in the Lagrangian of equation (4) 
satisfy the mass squared sum rule of  equation (1). This sum rule guarantees 
that the theory has no quadratic divergences (Capper  and Rajpoot, 1984). 
This result emerges from considering the effective potential at the one-loop 
level and extends over to the gauge boson masses after spontaneous sym- 
metry breaking [e.g., (2)]. Since supersymmetry is broken, the vacuum 
energy is divergent. This divergence can be canceled at the expense of 
introducing a quartic mass sum rule. However the validity of  this sum rule 
is obscure since the vacuum energy, a possible cosmological constant, is 
only relevant in the presence of  gravity and this has been ignored at the 
present level of  consideration. 

6. C O N C L U S I O N S  AND FUTURE O U T L O O K  

A systematic study of the explicitly broken N = 4 super Yang-Mills 
theory revealed that it has the following properties for finiteness: 

(i) It has a universal coupling for gauge and matter interactions. 
(ii) The representations are anomaly free. 

(iii) The charge renormalization vanishes, i.e., f l ( g ) =  0. 
(iv) Masses introduced into the theory are required to satisfy the 

supertrace sum rule ~ (-1)2s+~(2S+ 1)Ms = 0 at the tree level. 
The N = 2 theory can also be made finite by applying the above criteria. 

It satisfies (i) and (ii) due to N = 2 supersymmetry and renormalizability. 
In the absence of mass scales, finiteness requires (iii) and the representations 
are limited by the condition 2 C2(G) = T(Hi) = 2 T(Ri), where T(Hi)  = the 
second index of  the hypermultiplet. The masses are required to satisfy the 
tree-level sum rule of (iv). 

The above two examples led us to conjecture that it was possible to 
build ultraviolet finite field theories out of  N = 1 superfields if the four 
criteria listed above were satisfied. In the present paper  it has been verified 
that the charge renormalization vanishes at two loops if it vanishes at one 
loop and the masses require the supertrace sum rule if mass renorrnalization 
vanishes at one loop. 
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Finite N = 4 and N = 2 theories which satisfy the above four criteria 
for finiteness strongly suggest that N = 1 theories built out of  one vector 
and several matter multiplets are also finite to all loop orders if the above 
criteria are satisfied. Here we present a heuristic argument that suggests 
why our conjecture may be true. We consider massless versions of  the theory 
for simplicity. 

The N = 4 theory, which is finite in four dimensions, was constructed 
by formulating the theory in ten dimensions with N = 1 supersymmetry. It 
has only the vector multiplet which must be in the adjoint representation 
of the gauge group. The reduction to four dimensions splits matter into one 
vector and three matter ( N  = 1) multiplets again all in the adjoint representa- 
tion. Similarly the Yang-Mills part  of  the N = 2 theory comes from the 
formulation of the theory in six dimensions with N = 1 supersymmetry. Its 
reduction to four dimensions consists of one vector and one matter multiplet 
in the adjoint representation of G. The requirement that /3(g)  = 0 then fixes 
the number  of  allowed matter  representations. The central charge constraint 
requires these matter multiplets to occur in pairs of conjugate representations 
R and /~ of  G. When the representations R are adjoint the N = 2 theory 
coincides with the N = 4 theory. It is natural to expect that this hierarchy 
in finite field theories should continue. The only change from N = 4 theory 
to N = 2 theory is the representation content. All representations should be 
admissible provided they are anomaly free (the anomaly of adjoint rep- 
resentation is zero in the case of N = 4 theory, the anomaly of R consists 
the anomaly of R in the hypermultiplet of  the N = 2 theory). The only 
missing member  in this hierarchy of finite field theories is the one consisting 
of one N = 1 vector multiplet and several N = 1 matter multiplets. The 
allowed representations are required to satisfy equation (10) and be free 
from anomalies. 

The present work entertains the existence of the missing member  and 
verifies that there is some truth in this conjecture at least up to two loops 
in the absence of mass scales. An intriguing feature of  perturbative charge 
renormalization is that the two-loop contribution is determined in terms of 
the one-loop contribution 

b(o e) = 2C2(G ) �9 b (1) 

This result follows from using the result of  equation (20) in the expression 
for the two-loop contribution b(o 2). Since b(01) = 0, then b(o 2) = 0. Whether this 
factorization persists to all order is an open question. Work along these 
lines is in progress. 

Given these criteria, we have presented a set of  representations of  
various unifying groups which are finite and can accommodate  three 
families. Which of these are most appropriate requires further study. 
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